COMP2502 Assignment One

Algorithm Analysis

Ned Martin - 40529927
5 September 2004

COMP2502 Assignment One

ASYMPTOTIC ANALYSIS

SISorter Sort

The algorithm SISort, as implemented here, is the
same as “Straight Insertion Sort[l]”, the simplest
form of insertion sorting, an algorithm that takes
an 1initial sequence, and sorts it by placing the
element in the i*" position into a second sequence,
in sorted order. A linear search is used to locate
the position at which the next element is to be
inserted[1].

“Altogether, n-1 non-trivial insertions are
required to sort a list of n elements.[2]”

“The number of iterations of the inner loop in
the i*™ iteration of the outer loop depends on the
[..] array [being sorted]. In the Dbest case, the
value in the position i of the array is larger than
the value in position i-1 and zero iterations of the
inner loop are done.[3]” In other words, the best-
case running time is when the array is already
sorted, resulting in a running time of O(n).
Conversely, for an array that has 1its elements
already sorted, but in reverse order, 1 iterations
of the inner loop are required in the i"" iteration
of the outer loop[4], resulting in a worst-case
running time of 0(n?) .

Now, consider all possible permutations of a
sequence containing no duplicates. It turns out that
the average number of inversions in a permutation of
n distinct elements is n(n-1)/4[5]. If we consider
that the act of sorting a list is actually the same
as removing inversions, and that the inner loop of
an insertion sort is actually removing insertions
one at a time and that a swap takes a constant
amount of time, then we see that the average running
time for the SISort algorithm is o(n%) [5].

StandardFirstSorter Sort

5 September 2004

the other sub-sequence. Quicksort is then
recursively called on each of the sub-sequences,
eventually resulting in a sorted sequence.

The worst-case running time, O(nz), occurs when
one of the sub-sequences is empty, and the other
contains all the remaining elements. Conversely, the
best-case running time, O(n log;(n)), occurs when
the sub-sequences are evenly populated. Using a
little analytical logic, we can see that on average,
if we randomly choose the pivot, we will end up with
evenly-balanced sub-sequences as in the best-case
running time, thus the average running time is also
O(n logy(n)).

As it turns out, StandardFirstSorter always
chooses the leftmost (in this case, first) element
in a sequence as the pivot, giving it a best-case
running time equivalent to its worst-case running
time if the sequence is already ordered[7].

MedianOfThreeSorter Sort

The algorithm StandardFirstSorter is a form of
exchange sorting algorithm known as Quicksort[6].
Quicksort takes an unsorted sequence, selects a
point known as the pivot point, and splits the
sequence at this point into two sub-sequences. All
elements less than or equal to the pivot point are
placed into one sub-sequence, and all elements
greater than or equal to the pivot are placed into

ALGORITHM TESTING

To test the above asymptotic analysis, an
automated testing program[l] was written using Java.
This program creates a sequence of integers of a
given length, and runs them through a given sorting
algorithm, outputting the time taken to sort the
integers. The program accepts various arguments,
providing a simple way to test a given sorting
algorithm with a given set of data a given amount of
times, averaging the results to prevent spurious
differences in processing from skewing the timing.
The results of these tests are presented and
analysed in the next section.

Command line arguments for the program are as
follows:

-(qlp) AVERAGE (1]2]3) (1]12]3) N {(1]2]3) (1]2]3) N}
-n AVERAGE (1]2(3) (1]2]3) N {N}
-m AVERAGE (1[2]3) (1/2]3) N {N} MULTIPLIER

Where AVERAGE is the number of times to run the
sort, over which the result is averaged, N is the
length of the sequence to sort and MULTIPLIER is a
value by which each N 1is multiplied. The first
(112]3) identifies the sequence used, 1 for random,
two for ordered, 3 for reverse, and the second

Ned Martin - 40529927

The MedianOfThreeSorter algorithm is another
implementation of the Quicksort algorithm explained
in StandardFirstSorter above. In fact, the only
difference is that this algorithm uses the median-
of-three pivot selection technique[7] to select a
pivot that is highly likely to be random, even for a
sorted sequence, rather than choosing the leftmost
element. As this pivot choosing technique runs in
constant time, this gives the algorithm an average
running time equivalent to its best-case running
time, O(n 1log:;(n)). It’s worst-case running time
remains the same, o(n%) .

[1] B.R. Priess, Data Structures and Algorithms with Object-Oriented
Design Patterns in Java, Fairfield: John Wiley & Sons, 2000, pp. 495
[2] B.R. Priess, Data Structures and Algorithms with Object-Oriented
Design Patterns in Java, Fairfield: John Wiley & Sons, 2000, pp. 494
[3] B.R. Priess, Data Structures and Algorithms with Object-Oriented
Design Patterns in Java, Fairfield: John Wiley & Sons, 2000, pp. 496
[4] B.R. Priess, Data Structures and Algorithms with Object-Oriented
Design Patterns in Java, Fairfield: John Wiley & Sons, 2000, pp. 496
[5] B.R. Priess, Data Structures and Algorithms with Object-Oriented
Design Patterns in Java, Fairfield: John Wiley & Sons, 2000, pp. 497
[6] B.R. Priess, Data Structures and Algorithms with Object-Oriented
Design Patterns in Java, Fairfield: John Wiley & Sons, 2000, pp. 501
[7] B.R. Priess, Data Structures and Algorithms with Object-Oriented

Design Patterns in Java, Fairfield: John Wiley & Sons, 2000, pp. 509

(11213) specifies the sorting algorithm: 1 for
StandardFirstSorter, 2 for MedianOfThreeSorter and 3
for SISorter. Specifying the -p flag will print the
sequence used, both before and after sorting. Output
from the program is formatted as comma separated
values, suitable for manipulation by programs such
as Microsoft Excel[2].

In producing the results below each algorithm was
run a minimum of ten times, and the average time
taken to sort the data recorded. An ordered sequence
is specified as the set {1..N}, while a reverse
sequence 1is {N..l}. A random sequence 1is a pseudo-
random sequence of length N, with care taken to
ensure that the sequence was the same for all tests
within a given test case. A random sequence may
contain duplicates but is unlikely to.

[1 Java Program Attached to this submission.
2] Microsoft Excel, Microsoft Corporation,

Page 2 of 10

COMP2502 Assignment One

TEST RESULTS

The results of testing the sorting algorithms
StandardFirstSorter, MedianOfThreeSorter and
SISorter were recorded for a series of values of N
such that there was significant difference between
the highest and lowest timings. In general, an
exponentially increasing N was used, beginning at N
high enough to produce a statistically wvalid output
— generally found to be around 10 to 20 milliseconds
as values lower than this were too subject to small

increasing

of the JVM were reached.

created in Excel,

calculated,

median values

until

as

a

graphed([1],
shown below.
have been

eit

her

5 September 2004

a statistically
significant range was generated or the limitations

Tables of values were then
and various

Note that only
shown for each algorithm

values
seven

Many more were actually calculated for the

time/log(n)
1.97736
4.45241
7.65638
9.32543
12.0861
14.5034

below.

graphing.
[1] Graphs available in Appendix A.

Random StandardSort
n log(n) nlogn) n® time time/n

150000 171946 2679190 23E+10 34 0.00023
350000 18417 644548 12E+11 82 0.00023
550000 19.0691 1E+07 3E+11 146 0.00027
750000 195165 1.5E+07 56E+11 182 0.00024
950000 198576 1.9E+07 9E+11 240 0.00025
1150000 201332 23E+07 13E+12 292 0.00025
1350000 203645 27E+07 18E+12 338 0.00025

16.5975

timeln logs(n)
1.3E-05
1.3E-05
1.4E-05
1.2E-05
1.3E-05
1.3E-05
1.2E-05

time/n’
1.5E-09
6.7E-10
4.8E-10
3.2E-10
2.7E-10
2.2E-10
1.9E-10

differences in the computer’s processing, and
TEST ANALYSIS
StandardFirstSorter
Reverse StandardSort
n logy(n) nlogyn) n? time time/n timellogJn) timelnlogs(n) time/n’
1360 104094 141568 1849600 8 000588 0.76854 0.00057 4.3E-06
2720 114094 310335 7398400 20 000735 1.75294 0.00064 2.7E-06
4080 119944 48937 17E+07 40 00098 3.3349 0.00082 24E-06
5440 124094 675071 3E+07 70 0012867 5.64089 0.00104 2.4E-06
6800 127313 86573 46E+07 102 0.015 8.01174 0.00118 2.2E-06
8160 129944 106034 6.7E+07 156 001912 12.0052 0.00147 2.3E-06
9520 132167 125823 94E+07 212 002227 16.0403 0.00168 2.3E-06
Based on the above data, it is clear that the ratio
time/n’ is approaching a constant, indicating that

this algorithm’s average running time for a sequence
of reversed integers is O(n’). This can perhaps be
seen more clearly in the graph[l] of this function,
below.

n2

0.000003

0.00000257\ N, S

0.000002 -
0.0000015 -
0.000001
0.0000005
0

P

time/n2

O S ST LR SRR 2

time

Here we see the ratio time/n’ graphed against time,
where time 1is the time taken for the algorithm to
sort the given data, and n is the amount of data
being sorted. A flat graph shows that this ratio is
tending towards a constant, which, as shown by [2],
is the constant ¢, in the formula for “big oh”.
Graphs clearly show whether the ratios converge,
diverge, or tend towards a constant.

Ned Martin - 40529927

Once again, one ratio clearly approaches a constant,
indicating that StandardFirstSorter sorts sequences
of random integers in O(n logz(n)). This can be seen
more clearly in the graph of this function.

nlogn

0.00003
c 0.000025 -
> 0.00002 -
= 0.000015 - P
> —— S
£ 0.00001
* 0.000005

U I SN R I S L
time
Ordered StandardSort

n logy(n) nlog,n) n’ time time/n tmelogn) timeMlogfn) time/n’
1500 1055075 1582612 2250000 1 0000667 0.09478 6.32E-05 444E-07
K00 128771 2821928 6250000 5 0.002 0.44296 0.000177 8E-07
B0 177314 4120699 12250000 9 0.002571 0.764452 0.000218 7.35E-07
4500 1213571 5461069 20250000 15 0003333 1.236022 0.000275 741E07
5500 1242522 6833869 30250000 22 0.004 1.770593 0.000322 7.27E-07
6500 1266622 8233046 42250000 31 0.004769 2.447454 0.000377 T.34E-07
B899 1275217 8797723 47596201 36 0005218 2.823049 0.000409 7.56E-07
StandardFirstSorter, based on the above data,

appears to sort already ordered data in o(n®) .

Page 3 of 10

COMP2502 Assignment One

n2

0.000001
0.0000008 -

N\~
/

0.0000006

time/n2

0.0000004 -
0.0000002

0 +——
1 3 5 6

9 12 15 18 22 27 31

time

36

For most of the test cases, values of n were chosen
that produced values for time ranging from 10
milliseconds upwards, as values below 10 were found
to be too easily influenced by small unpreventable
changes in the operating environment of the computer
running the test cases. This can be clearly seen in
the wvalues of time below 10 on this graph. The
StandardFirstSorter, due to 1ts recursive nature,
causes a stack overflow error when sorting large
amounts of data, thus preventing an n high enough to
achieve time values above 36 milliseconds. To
partially overcome this limitation, this particular
test was run several times, averaged over one
hundred times, and the results of each of these
tests then averaged to offset changes caused by the
uncontrollable variances in the machine running the
tests.

n
1500
3500
5500
7500
9500
11500
13600

loga(n)
1055075
177314
1242522
12.87267
1321371
1348935
13.72067

n logs(n)
15626.12
41205.99
68338.69
96545.06
1256303
165127.5
185229.1

Random SiSorter

I,12

2250000
12250000
30250000
56250000
90250000
1.32E+08
1.82E+08

Sorting randomly ordered
a running time of n’, as
being roughly constant,

consta

nt.

time time/n
8 0005333
30 0.008571
82 0014909
154 0.020533
240 0.025263
354 0.030783
494 0.036593
data with

5 September 2004

time/logy(n)
0.75824
2.548173
6.599483
11.96333
18.16295
26.24293
36.00407

time/n log,(n)
0.000505
0.000728
0.0012
0.001595
0.001912
0.002282
0.002667

time/n”
3.56E-06
2.45E-06
2.71E-06
2.74E-06
2.66E-06
2.68E-06
2.71E-06

SISorter gives us
shown by the time/n’ column
and its graph approaching a

0.0000029
0.00000285 -

n2

0.0000028 -
0.00000275
0.0000027 -
0.00000265
0.0000026
0.00000255

o

\W

SO AR S

time/n2

time

Once again, this is what we expect.

Ordered SlSorter

SISorter
Reverse SlSorter

n logy(n) nlogn) n’ time time/n timellogn) timelnlogsn) time/n’
1500 10.5507 158261 2250000 14 000933 1.32692 0.00088 6.2E-06
3500 117731 41206 12E+07 68 001943 5.77586 0.00165 5.6E-06
5500 124252 683387 3E+07 162 002945 13.038 0.00237 54E-06
7500 128727 965451 56E+07 308 004107 23.9267 0.00319 55E-06
9500 132137 125530 9E+07 488 005137 36.9313 0.00389 54E-06
11500 134893 155127 13E+08 719 006252 53.3013 0.00463 54E-06
13500 137207 185229 1.8E+08 989 007326 72.081 0.00534 54E-06

The ratio of time/n’

for

reverse-ordered
suggesting that this algorithm is

data

by

clearly approaches a constant
sorted

SISorter,
running in 0(n?)

time, and this can also be seen clearly in the graph
below.
n2
0.000007
0.000006 ,,\ .
~ 0.000005
£ 0.000004
£ 0.000003
% 0.000002
0.000001
O
© o O I QO P O O O 9
Y ¥ O N > N7 7 WX
S AN S S SR
time
If we remember, SISorter will run 1its worst-case
running time of 0(n®) unless the data is already

sorted.

to be expected.

Ned Martin - 40529927

Considering that
about as far from sorted as possible,

reverse-ordered data
this result is

is

n
1500000
3500000
5500000
7500000
9500000
11500000
13500000

Sorting ordered data using SISorter gives

ratios

logs(n)
2051653
2173802
22.391
2283846
2179
2345513
2368646

n logs(n)
0mndr97
76086232
1.23E+08
1.71E+08
2.2E408
2.TE+08
32E+08

n2

2.25E+12
1.23E413
3.03E+13
5.63E+13
9.03E+13
1.32E414
1.82E414

time
8
20
34
42
52
66
74

time/n
5.33E-06
5.71E-06
6.18E-06
5.6E-06
547E-06
5.74E-06
5.48E-06

that approach a constant,
and time/n,

fime/logy(n)
0.389929
0.920009
1.518467
1.839003
2.243362
2.813883
3.124148

timeln logy(n)
2.6E-07
2.63E-07
2.76E-07
2.45E-07
2.36E-07
2.45E-07
2.31E-07

us

time/n’
3.56E-12
1.63E-12
112612
TATEA13
5.76E-13
499E-13
4,06E-13

two

time/ (n logs(n))
giving us two possible “big oh” values.

Time/n

0.000007
0.000006 -
0.000005

0.000004 -
0.000003 -
0.000002
0.000001 -

n

DAY Sy S

0

Y

B

S & @ & &

time

Further analysis,
already sorted data is the best-case for SISorter,

which happens to be O(n),

however,

is indeed the correct value.

will reveal that sorting

so we conclude that O(n)

Page 4 of 10

COMP2502 Assignment One

5 September 2004

nlogn

0.00002
=0.000015\
o)) wa
o
= 0.00001
)
£ 0.000005 |

PSR P PSP
time

Here we can come to the same conclusion as above:
the average running-time using randomly ordered data
with this algorithm is O(n log,(n)) .

Ordered MedianOfThree
2

MedianOfThreeSorter
Reverse MedianOfThree

n logfn) nlogn) n® tme timem timellogn) timelnlogsn) time/n?

800000 19.61 2E+07 6E+11 58 T7E-05 2.9577 3.76E-06 9.063E-11

2E+06 2061 3E+07 3E+2 120 8E-05 5.8225 4.42E-06 4.688E-11

2E+06 21195 5E+07 6E+12 208 9E-05 9.8138 3.71E-06 3.611E-11

3E+06 21.61 T7E+07 1EM3 244 8E-05 11.291 3.64E-06 2.383E-11

4E+06 21932 9E+07 2E+13 362 O9E-05 16.506 4.13E-06 2.263E-11

5E+06 221% 1E+08 2EH13 418 9E-05 18.833 3.92E-06 1.814E-11

6E+06 22417 1E+08 3E+13 454 8E-05 20.252 3.51E-06 1.448E-11
Examining the different ratios of time over various
possible “big oh” wvalues, we can conclude that
sorting reverse-ordered data with the
MedianOfThreeSorter algorithm, is either O(n
logz(n)) or O(n).

nlogn
0.000005
I\~

< 0.000004 N S N~ ~——

& 0.000003

< 0.000002 -

é 0.000001 -

(fp & \q’Q \Q)b& r{}b& ‘1,/\% {b(-ofl, b&'\Q b,:go bg)b\
time

Given that the Dbest-case running time for the
MedianOfThreeSorter, as given in the Asymptotic
Analysis at the start, 1is 0O(n log,(n)), we can

assume that it will not run better than its best -
thus O(n log;(n))

n
320000
640000
960000
1280000
1600000
1920000
2240000

Once again we see
values towards the

logz(n)
18.2817
19.2817
19.8727
202817
20.6096
28721
21.0951

n logz(n)
5852068
1.2E407
19E+07
26E+07
3.3E+07
4E+07
4.TE+07

Random MedianOfThree

nZ

1E+11
41EH11
9.2E411
1.6E+12
26E+12
3TEH2
5E+12

time
80
158
252
340
432
518
602

time/n
0.00025
0.00025
0.00026
0.00027
0.00027
0.00027
0.00027

timellog(n)
4.37452
8.19174
12.6807
16.7589
20.9611
24.8171
28.5375

the unreliability of

is the plausible value here.

time/n logy(n)
1.37E-05
1.31E-05
1.32E-05
1.29E-05
1.28E-05
1.3E-05
1.26E-05

lower end of this graph.

CONCLUSION

In conclusion,

asymptotic analysis
evidence,

we have

averages we would expect.
SISorter algorithm

The
best,

(and also

O(n),

ran

for ordered data,
theoretical worst)
reverse-ordered and randomly-ordered data.

found that the
is well-supported by the test
with all tests producing the running time

timeln’
7.8E-10
3.9E-10
2.7E-10
2.1E-10
1.7E-10
1.4E-10
1.2E-10

small time

original

at its theoretical
and at 1its average
0(n®) time for both

This 1is

to be expected, given the way that algorithm works.

The StandardFirstSorter algorithm ran at its
worst, O(nﬂ, for both ordered and reverse-ordered
data, but ran at its average O(n log,(n)) when
sorting randomly-ordered data. If we remember,

SISorter is a Quicksort algorithm that chooses the

leftmost
efficiency on ordered data,

element

as

Ned Martin - 40529927

its

pivot,
but when the data

thus

losing

is

n logo(n) nlogy(n) n fme timefn timellogn) timeilogsn) timeln’
1000000 19.9316 2E+07 1E+12 78 78E-05 3.91339 3.9E-06 7.8E-11
1800000 20.7796 37E+07 32E+12 140 78E-05 6.73739 3.7E-06 4.3E-11
2600000 21.3101 55E+07 68E+12 196 75E05 9.19753 3.5E-06 2911
3400000 21.6971 7AE+07 12E+13 256 75E05 11.7988 3.5E-06 22E-11
4200000 22.002 9.2E+07 18E+13 354 B4E05 16.0895 3.8E-06 2E-11
5000000 222535 1.1E+08 25E+13 401 8E-05 18.0196 3.6E-06 16E-11
5800000 224676 1.3E+08 34E+13 431 74E05 19.1832 3.3E-06 1.3EN

Similarly to above, the MedianOfThreeSorter
algorithm sorts ordered data in O(n logy(n)) time,

this being it’s best-case, and average, running
time.

nlogn
0.000005
& 0.000003 -
< 0.000002
'g 0.000001
0
o O © ©) N
SIS S SR
time
1 See graph in Appendix A
[2] B.R. Priess, Data Structures and Algorithms with Object-Oriented

Design Patterns in Java, Fairfield: John Wiley & Sons, 2000, pp. 36

randomly-ordered choosing any pivot 1s equally
efficient.

The MedianOfThreeSorter algorithm ran at 1its
average O(n log,(n)) time for all test data, ordered
or not. This makes it the most efficient overall
sorting algorithm of the three tested.

The SISorter algorithm provides the most efficient
way to sort already sorted data - a very
questionable advantage, but is inefficient on other
data. Of the two Quicksort algorithms tested, the
StandardFirstSorter algorithm is efficient only on
randomly-ordered data, while the MedianOfThreeSorter
algorithm is equally efficient when sorting ordered
or non-ordered data, making it the clear choice for
sorting any data that isn’t already sorted.

Page 5 of 10

COMP2502 Assignment One

NOTES

5 September 2004

. Tests were conducted on a Pentium 4 2.8 GHz computer with 512 MB RAM running Windows XP.
o The Java version used was

Java (TM)
Java HotSpot (TM)

values are shown.

2 Runtime Environment,
Client VM (build 1.3.1-b24,
o Values in tables have been rounded to only a few significant digits for brevity,
The actual values used in calculation and graphing were calculated to the maximum

Standard Edition

precision provided by Microsoft Excel.

. The randomly-ordered data used throughout was generated by manually seeding Java’s Random()

(build 1.3.1-b24)
mixed mode)

which will then generate a pseudorandom sequence using a linear congruential formula.

may contain duplicates,
was used for each test within a single averaged operation,
for any different test cases.

but are unlikely to for small sequences.

In testing,

APPENDIX A — ALGORITHMIC ANALYSIS GRAPHS

Reverse Standard Sort

and only median

function,

Random sequences

the same random sequence
but a different random sequence was used

n2 nlogn
0.000003 0.002
\
e 0.000002 > 4“—_’_’,_,——
3 0.0000015 = 0.001
£ 0000001 E ,/
0.0000005 5 00005 17
0 0
D NI U I SIS SRS N LGN
time time
n logn
0.025 20
o
£ 0015 > ‘,r’/'
S / 2 10
£ 001 — E "”’_,r
0.005 =5 ’_—__’_,,——/r
0 0 = S S
q,Q (f}j @ (05& /\Q %5‘ \Q‘\, QS\/ (,SO {\‘b q:\q/ ‘\,@, v % \Q ']9 rtb @ (35‘ /\Q %5‘ \Q‘.\/ \'bq’ (0(6)(\cb ‘\:\q/ q/@/
time time

Ned Martin - 40529927

Page 6 of 10

COMP2502 Assignment One
Random Standard Sort

5 September 2004

n2 nlogn
2 5E-09 0.00003
0.000000002 \\ < 0000025
o 5609 2 0.00002
£ 0.000000001 \ R L — —
E" \\\5‘_ S 0.00001
5E-10 ———— = 0.000005
{} > P)&p <® (6} ﬁ& ‘g} %ﬁb gy ﬁ} > P Q® <® i@ ‘ﬁ& i&» §& (§¥
time time
n logn
0.0003 20
0.00025 | A\ ~——
Y g =15 4———"’—-”
0.0002 /
- (=]
@ 0.00015 210
E (]
= 0.0001 £ 4 ‘,—’—'—"
0.00005 —
JFINIIIRIIIeScee s U N N RN U SN R
time time
Ordered Standard Sort
n2 nlogn
0.000001 0.0005
. 0.0000008 /.v — c 0.0004 /
< 0.0000006 / & 0.0003 /
[+
£ 0.0000004 g 0.0002 —
0.0000002 £ 0.0001 A
1 0 -
T3 5 6 9 1215 18 2 271 31 36 1 3 5 6 9 12 15 18 22 27 31 36
time time
n log n
0.006 3 _
0.005 ~ 25
0004 _— s P
S 0,003 _— 2 15 _~
= 0002 g 1 -
0.001 ,/ 0.5
0 T T T T T T T T T T T 0 / T T T T T T T T
1 3 5 6 9 12 15 18 22 27 31 36 1 3 5 6 9 12 15 18 22 27 31 36
time time

Ned Martin - 40529927

Page 7 of 10

COMP2502 Assignment One 5 September 2004
Reverse SISorter Sort

n2 nlogn
0.000008 0.007
0.000006 1= = 0008 —
. — 0.005
= < S 0,004 —
s 0.000004 - < 0003 e
= 0.000002 £ 0,002 - /
= 0.001 | e
0 T o--- SR
S o o NI IS
o> oS \Q,‘\/ PN N \\@ O D P ’{,gb e}x ({,\Q %520 &gb (0@ r{;;’ /\%\ q@\@\ ({/ﬁ;
time time
n logn
0.1 100
0.08 — _ 8 //
=006 - > 60 —~
4 -_—
E 004 _— e 40
0.02 / =2 ‘/
0 T 0’ T T T T T T T T T T T T T T T
° D *’@P§y$®%$§?é$é§<9§§@96ﬁ © D W %°@P£y€9%®&§éﬁé?ﬁ?é§@$df
time time

Random SISorter Sort

n2 nlogn
0.0000029 0.0035
0.003 -
00000028 \ & 00025 //-
<0
S 00000027 | \’\/\‘V\—J\/\ o 0002 __—
£ < 0.0015
= @
= 0.0000026 @ 0001 _—
= : Aj—/
0.0000025 oooog 7~
WS (PP S MR A
time time
n logn
0.05 50
— 40 -

30 /

0.04 —

=003

E£002 // 20 /
0.01 10 _—

e o/

LRI R R R P S\ SR VS PR @ P D P o

time/log n

time time

Ned Martin - 40529927 Page 8 of 10

COMP2502 Assignment One
Ordered SISorter Sort

5 September 2004

n2

5E-12

4E-12

< 3E12 N\

-}
£ 2E12

B2

RN N I I I M SN SRR R

time

nlogn
0.0000003 N
Y \ N i
c 0.00000025 \V VS
= 0.0000002

[=]

~ 0.00000015
g 0.0000001
= 0.00000005

XA D R PR

time

0.000007

0.000006 7\

VW
0.000005 - NS
< 0.000004

E 0.000003

" 0.000002

0.000001

0

XD DA RPN

time

logn

~

\

el

~
_—

SR DD DRSPS DD O

N

timel/log n

—_

time
Reverse MedianOfThree Sort
n2 nlogn
2E-10 0.000005
\ 0.000004 AN
15E-10 < VNS e e —
{=2]
o~ \ 2 0.000003
s TE10 \ < 0,000002
= 5e1 —_— £ 0.000001
NBsE8Eg33s88TERs LRI A
time time
n logn

0.0001 25

0.00008 N’\\/\w/\) 2 /)
£ 0.00006 > 15
@ o
E 0.00004 s 10 -

0.00002 = 5 /

0 -
0
P D P P PR RO PP S ® P F
time time

Ned Martin - 40529927

Page 9 of 10

COMP2502 Assignment One
Random MedianOfThree Sort

5 September 2004

n2 nlogn
0.000000004 0.00002
0.000000003 \ o, 0-000015 \\ -
™ o
(= —
> 0.000000002 \ = 000001
£ '\ s
0000000001 ~—— £ 0.000005
24 36 56 80 93 116 138 158 178 206 224 A I PSS R\
time time
n logn
0.00035 35
0.0003 30
0.00025 \v e e c 25 /—/
< 0.0002 20 P
£ 000015 315
= 00001 £ 10 ——
0.00005 5 //
q} g@ Qp Q$ Q& iﬁsfﬁb §§ %§>r$p §§ §$ qy Qp d@ Q$ Q&(ﬂy{ﬁp §§ %§ §§ §§ §§)69‘§§ é@
time time
Ordered MedianOfThree Sort
n2 nlogn
2E-10 0.000005
15610 1N = 0000004 T~
o my \
< S 0.000003
s 1E10 -
= < 0.000002
= SEM —_—— £ 0,000001
0 0
o o o Q © o A) W
RN R I SR AR O S R R
time time
n logn
0.0001 25
A
0.00008 (A~ —— L /_/
£ 0.00006 21 /
£ 0.00004 g 10
0.00002 < 5 _—
SRR Sl SN SIS U I I O A SRS NN
time time

Ned Martin - 40529927

Page 10 of 10

