COMP3601 - Assignment 2

Name: Ned Martin

Student Number: 40529927

MACHINE Hire

SETS ITEMS ; CUSTOMERS

CONSTANTS maxitems, bag_total, total_items, number_of_item, bag_union

PROPERTIES

maxitems $\in \mathbb{N} \land$ $bag_total \in ITEMS \Rightarrow \mathbb{N}_1 \rightarrow \mathbb{N}_1 \land$ $\forall bb . (bb \in ITEMS \rightarrow \mathbb{N}_1 \Rightarrow bag_total (bb) = \sum zz . (zz \in \mathsf{dom} (bb) \mid bb (zz))) \land$ total number of items hired to a customer total_items \in (CUSTOMERS $\times \mathbb{N} \rightarrow$ (ITEMS $\rightarrow \mathbb{N}_1$)) \times CUSTOMERS $\rightarrow \mathbb{N} \land$ \forall (hh, cc). (hh \in CUSTOMERS $\times \mathbb{N} \rightarrow ($ ITEMS $\rightarrow \mathbb{N}_1) \land$ $cc \in CUSTOMERS \Rightarrow$ $total_items (hh, cc) =$ $\sum zz$. ($zz \in \{ cc \} \triangleleft dom (hh) \mid bag_total (\{ zz \} \triangleleft hh (zz)))) \land$ total number of specific items on hire $number_of_item \in (CUSTOMERS \times \mathbb{N} \rightarrow (ITEMS \rightarrow \mathbb{N}_1)) \times ITEMS \rightarrow \mathbb{N}_1 \wedge$ $\forall (hh, ii) . ($ $hh \in CUSTOMERS \times \mathbb{N} \rightarrow (ITEMS \rightarrow \mathbb{N}_1) \land$ $ii \in ITEMS$ \Rightarrow number_of_item (hh , ii) = $\sum zz$. ($zz \in dom (hh) \mid bag_total (hh (zz)))) \land$ merges two bags bag_union \in (ITEMS $\rightarrow \mathbb{N}_1$) \times (ITEMS $\rightarrow \mathbb{N}_1$) \rightarrow (ITEMS $\rightarrow \mathbb{N}_1$) \wedge \forall (ba, bb). (ba \in ITEMS $\rightarrow \mathbb{N}_1 \land$ $bb \in ITEMS \twoheadrightarrow \mathbb{N}_1$ \Rightarrow bag_union (ba \mapsto bb) = $\{xx, yy \mid xx \in \mathsf{dom}(ba) \cup \mathsf{dom}(bb) \land$ $yy \in \mathbb{N}_1 \wedge$ $yy = bag_total (\{ xx \} \triangleleft (ba \cup bb)) \})$

VARIABLES

today, stock, hasHired

INVARIANT

today $\in \mathbb{N} \land$ stock \in ITEMS $\leftrightarrow \mathbb{N} \land$ hasHired \in CUSTOMERS $\times \mathbb{N} \leftrightarrow$ (dom (stock) $\leftrightarrow \mathbb{N}_1$) \land ^{customer cannot hire more than maxitems total} $\forall cc . (cc \in CUSTOMERS \Rightarrow total_items (hasHired, cc) \leq maxitems) \land$ ^{cannot hire more items than those in stock} \forall ii. (ii \in dom (stock) \Rightarrow number_of_item (hasHired, ii) < stock (ii))

INITIALISATION

today, stock, has Hired := 0, $\{\}$, $\{\}$

OPERATIONS

Hire given instances of given item to given customer if items are available and customer has not already hired maxitems

```
hire (item , customer , quantity , duration ) \hat{=}
```

\mathbf{PRE}

```
item is valid stock
   item \in \mathsf{dom}(stock) \land
    customer is a customer
    customer \in CUSTOMERS \land
    quantity is greater than none
    quantity \in \mathbb{N}_1 \land
    stock is available, that is, quantity is less than or equal to stock on hand minus stock hired
    quantity \leq stock (item) – number_of_item (hasHired, item) \wedge
    customer cannot hire more than maxitems
    total_items ( hasHired , customer ) + quantity \leq maxitems \wedge
    duration \in \mathbb{N}
THEN
    add items hired for this customer
    hasHired (customer \mapsto today + duration) :=
    bag_union (
         { customer \mapsto today + duration } \triangleleft has Hired ( customer \mapsto today + duration ) ,
         { item \mapsto quantity } )
```

END

;

Output a subset of hasHired which are overdue items where return date is less than today

```
oi \leftarrow overdue \triangleq

PRE

nothing to check

true

THEN

io equals all overdue items

oi := dom ( hasHired ) \triangleright 1 . . today - 1 \triangleleft hasHired

END
```

END